TEKNOLOGI PERTANIAN
Selasa, 24 Desember 2013
Resources, Conservation and Recycling 78 (2013) 74– 80
Contents lists available at ScienceDirect
Resources, Conservation and Recycling
journa l h om epa ge: www.elsevier.com/locate/resconrec
Review
Polymer film packaging for food: An environmental assessment
C.Y. Barlow∗, D.C. Morgan
Institute for Manufacturing, University of Cambridge, 17 Charles Babbage Road, Cambridge CB3 0FS, UK
a r t i c l e i n f o
Article history:
Received 16 March 2013
Received in revised form 7 July 2013
Accepted 8 July 2013
Keywords:
Packaging
Multi-layer plastics
Barrier
Recycling
a b s t r a c t
Plastics packaging is ubiquitous in the food industry, fulfilling a range of functions including a significant
role in reducing food waste. The public perception of packaging, however, is dominated by end-of-life
aspects, when the packaging becomes waste often found littering urban, rural and marine environments.
A balanced analysis of the role of packaging demands that the whole lifecycle is examined, looking not
only at the packaging itself but also at the product being packaged. This paper focuses on packaging in the
meat and cheese industry, analysing the impact of films and bags. The functions of packaging are defined
and the environmental impact of delivering these functions is assessed. The influence of packaging on
levels of waste and energy consumption elsewhere in the system is examined, including the contentious
issue of end-of-life for packaging.
Strategies for minimizing the environmental impact of the packaging itself involve reduction in the
amount of material used (thinner packaging), rather than emphasizing end-of-life issues. Currently, with
polymer recycling not at a high level, evidence suggests that this strategy is justifiable. Biodegradable
polymers may have some potential for improving environmental performance, but are still problematic.
The conclusion is that although current packaging is in some ways wasteful and inefficient, the
alternatives are even less desirable.
© 2013 Elsevier B.V. All rights reserved.
Contents1. Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .741.1. The role of packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .741.2. Polymer film packaging in the meat and cheese industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .751.3. Multi-layer or mono-layer polymer films? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .762. Polymer recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .772.1. General issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .772.2. Recycling of mixed or post-consumer polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .782.3. Recycling of films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .793. Biodegradable polymers for food packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .794. Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .801. Packaging1.1. The role of packagingPackaging of different sorts is found in the food and drink supplychain. Primary or sales packaging (e.g. packets for biscuits, bottlesfor milk) is the most familiar to the general public, and is defined as“a sales unit to the final user or consumer at the point of purchase”∗Corresponding author. Tel.: +44 1223332627.E-mail address: cyb@eng.cam.ac.uk (C.Y. Barlow).(European Parliament and Council Directive, 1994). The function ofsecondary packaging is to group items together for sale to the cus-tomer or to replenish the shelves at the point of sale e.g. trays, boxesor films. Finally tertiary packaging is used to group goods for trans-port, for example pallets and film are used to facilitate transportin trucks (Incpen, 2010). We will here focus on primary packaging,which tends to be the most visible aspect of packaging. Secondaryand tertiary packaging is mostly removed by retailers, and so formspart of the commercial rather than the domestic waste stream.End-of-life disposal of polymers from industrial and commercialsources is handled differently from products which have enteredthe consumer market. In some ways the problems are less difficult
0921-3449/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.resconrec.2013.07.003
C.Y. Barlow, D.C. Morgan / Resources, Conservation and Recycling 78 (2013) 74– 80 75
Table 1
Functions of primary packaging.
Function Achieved by Example
Product handling Containers for loose goods and liquids; clustering of
small items.
Bottle, box, bag (liquids, powders) Tray, bag (meat,
cheese, loose foods and other products)
Barrier; hygiene Prevents contact between atmosphere/environment
and product; selective passage of gases; protect from
light; prevent odours escaping.
Plastic bag for foods multi-layer packaging for cheese
Protection Fragile items: impact-resistant packaging; surface
damage for other items
Egg box; blister pack
Increased product life Barrier function; inert atmosphere; reduce handling Foods in protective atmosphere or in vacuo
Tamper-evidence Sealed container Tamper-evident tabs; removable metal can lids
Information; advertising Writing and pictures on packaging Labels stuck on; printing directly on to packaging
to tackle: contamination may be lower, and the range of materialsis smaller, but economic pressures mean that effective recyclingrates may be very low (e.g. Hopewell et al., 2009; Shonfield, 2008).The functions of primary packaging are summarized in Table 1.The packaging industry is huge: the UK industry is estimatedat £10 billion, with 85,000 employees, making up 3% of the UKworkforce (Packaging Federation, 2013). The industry is subjectto pressure from disparate stakeholders: producers, retailers andcustomers have different priorities, and packaging is not alwaysperceived as adding value to the product. Packaging is by its naturetransient; most packaging has a short lifetime and is discarded afteruse, entering the municipal waste stream after a lifetime of typicallyless than a year (Hopewell et al., 2009). Public attitudes towardspackaging are generally negative, when the matter is considered atall. Reporting on a survey of over 1000 consumers (Incpen, 2008),79% believed products to be over-packaged, about 35% believedpackaging is difficult to dispose of and is bad for the environment.The industry invests time and energy in defending the benefits ofpackaging in reducing waste across the whole supply chain (e.g.Incpen, 2010, reporting that packaging typically protects food andgoods which have more than ten times the energy and resourcesembodied in the packaging).As is evident from Table 1, packaging does have many functions.80% of customer purchasing decisions for foodstuffs are madebased on the packaging (Mortensen, 2008).It is estimated (Packaging Federation, 2013) that 50% of foodmay be wasted in developing countries before it reaches retailers,compared with 3% in developed countries; packaging is thought toplay a large part in this. The wastage reduction comes mainly fromthe physical protection against damage afforded by the packaging,and by the increased usable product life provided by the barrierfunction. For example, the Packaging Federation cites a cucumbergrowers association study that claims unwrapped cucumbers areunsaleable after 3 days because of loss of water, but 1.5 g packagingreduces water loss to the extent that the shelf-life can be increasedto 14 days.It is estimated that 50% of food produced globally never reachesconsumers and that a significant proportion of this could bereduced by increased packaging (Incpen, 2010; Love Food HateWaste, 2013) The industry (Packaging Federation, 2013) points outthat packaging reduces damage in the supply chain and increasesthe shelf-life of products.Through tamper-proofing, packaging enables a high standard ofproduct quality assurance, which is not possible with loose goods.The energy consumed by packaging must be viewed in relation tothe whole supply chain. Looking at a typical food supply chain,50% of the energy is used in food production, 10% in commercialtransport to shops and retailing, 10% for packaging and 30% by con-sumers transport to shops, storing and cooking food (Incpen, 2010).Looking at the specific example of meat packaging using LDPE film,some estimates are given in Table 2. A bag weighing about 20 gis sufficient for between 0.5 and 1 kg of meat. The emissions fromproduction of 1 kg of LDPE in the form of film are about 3 kg CO2e(Plastics Europe, 2008), so that 0.05 kg CO2e is emitted to providepackaging for 1 kg meat.Packaging is subject to legislation to try to minimize environ-mental impact. UK legislation introduced in 2003 specifies that“. . .packaging volume and weight be limited to the minimum ade-quate amount to maintain the necessary level of safety, hygieneand acceptance for the packaged product and for the consumer”(Packaging Legislation, 2003). It is a further requirement that pack-aging “shall be designed, produced and commercialized in sucha way as to permit its reuse or recovery, including recycling. . .”These two requirements are not compatible: as demonstrated inthe current work, minimum weight packaging comes at the costof sacrificing recyclability. Reference is also made to minimizingthe presence of noxious and hazardous materials in end-of-lifeprocessing. Other countries have comparable aspirations to try toachieve these aims. For example, the US Environmental ProtectionAgency supports the Sustainable Packaging Coalition (SPC). A crossindustry working group founded in 2005, the SPC proposes criteriafor sustainable packaging which include minimizing the amount ofmaterial used, and avoiding materials which could be harmful atany stage in their lifecycle (Sustainable Packaging Coalition).The aims of such initiatives are admirable, but the implementa-tion is more problematic. Some of the technical issues are exploredfurther in Section 2, but there are also social and economic factors.Widespread adoption of sustainable practices requires strong andcoherent policy, at national and international levels. Some of thedifficulties relating to policy and plastics are discussed by Shaxson(2009).1.2. Polymer film packaging in the meat and cheese industryThe preservation of meat and cheese as it passes throughnational and international distribution networks requires anextended shelf life so that the product remains saleable. The pack-aging is typically designed to fulfil a range of functions, as shownin Table 3. The function of the barrier layer is not always simply toact as an impermeable membrane isolating the contents from itssurroundings. The requirements for cheese are particularly exact-ing, varying with cheese type (e.g. Robertson, 2013). For example,Emmental cheese emits carbon dioxide and propionic acid as itripens inside the packaging. The CO2needs to be able to escape bydiffusing out through the packaging, whilst water must be retainedinside the package and oxygen must be prevented from entering(Mortensen, 2008). By contrast, soft cheeses such as camembert
Table 2
Comparison of packaging and food production energies.
Beef Chicken Pork
Meat production CO2 equivalent/kg (Fiala, 2008) 14.8 1.1 3.8
% emissions contributed by LDPE packaging 0.5% 7% 2%
76 C.Y. Barlow, D.C. Morgan / Resources, Conservation and Recycling 78 (2013) 74– 80
Table 3
Functions of polymer film packaging (Morgan, 2010).
Function Achieved by Typical Material
Fits closely around product Shrink-wrap; flexible
film
LLDPE
Packaging closure Heat seal LDPE
Mechanical strength Toughness PE, PP
Attractiveness High gloss surface PE
Barrier Impermeable or
semi-permeable film:
keep inert atmospheres
in; controlled passage
or barrier to range of
chemicals including
odours, oxygen, water,
CO2
PVDC, EVOH, PA
Bonding layers together Thin tie-layer EVA
need to lose water at a rate varying between 0.5% and 12% at differ-ent stages in the ripening process. Different polymers have differentpermeabilities for each of these chemicals (Brent Strong, 2005),so the packaging barrier properties can be tailored to the prod-uct by choice of materials and the film thicknesses. For soft cheesesit is common to tailor barrier properties by introducing carefullycontrolled perforations.The most common polymer barrier materials are EVOH, PVDCand PA, and these may be blended to modify their functional-ity. Additional barrier properties can be provided by the use ofaluminium, either in the form of foil (about 12 m in thickness),or as a metalized layer (typically about 30 nm) on a polymerfilm, often PP or PET. Food packaging films vary in thicknessbetween about 10 m and 250 m depending on the combina-tion of strength, durability and barrier function demanded by theapplication. Cheese packaging is usually between 100 and 200 m;the barrier layer typically comprises 20–30% of the total thickness.Mechanical properties, and in particular the toughness which pro-vides resistance to piercing and splitting, are commonly suppliedby PE or PP in thicknesses which can be at least 70% of the total filmthickness.An obvious way of minimizing the amount of material in thepackaging is to use different materials optimized for each of thesefunctions, combined into a single multi-layer film. Three, five andseven layer films are commonly manufactured; more layers aresometimes required. Producing multi-layer blown film of suchcomplexity has been standard practice in the industry for manyyears, and does not add significantly to the cost of the process. Thenumber of failure modes and hence likely amount of waste mate-rial associated with the production of multi-layer films is typically,however, somewhat increased (Morgan, 2010). Furthermore, a filmof this type suffers the disadvantage that it is formed of polymerswhich are immiscible or otherwise incompatible, and so it is noteasily recycled.The alternative to multi-layer films is to use polymers thatare not optimized for these different functions, which means thatgreater thicknesses are required to achieve the barrier proper-ties and the mechanical strength in particular. These optimizationaspects are explored further in Section 1.3.1.3. Multi-layer or mono-layer polymer films?Polymer films are immediately attractive as lightweight pack-aging because of their high strength-to-weight ratio, and usingcombinations of films optimized for the different required func-tions leads to further light-weighting. However, this is achieved atthe cost of recyclability: multi-layer films are at best difficult, andtypically essentially impossible to recycle to a high-value product(e.g. Pilz et al., 2010). In this section we will explore the advantagesFig. 1. Permeability of plastics relative to PVDC. Data from CES, 2008.and disadvantages of multi-layer packaging as opposed to simplerfilms which might more easily be recycled.Looking first at the barrier function of the film, which is its mostdistinctive feature, we can compare the performance of differentpolymers by looking at the thickness of the film which would berequired to achieve the same function, shown in Fig. 1 (Morgan,2010). PVDC, commonly used as the barrier layer, is used as thebaseline comparator. Noting that the chart uses a logarithmic scale,it is immediately apparent that EVOH and PVDC appear to presentbest opportunities for minimization of material. The industry isfiercely competitive on cost, so Fig. 2 shows the cost of achievingequivalent barrier function, again normalized to PVDC. Once again,EVOH and PVDC are the most attractive: the greater material costsper unit weight are more than outweighed by the reduction in theamount of material required, because of the reduction in thicknessof the film.Minimizing the film thickness carries environmental advan-tages which extend beyond simply reducing the amount of materialconsumed in fulfilling the function of the film. Factors relevant tothis analysis are summarized in Table 4.Attempting to quantify all of these effects is difficult. However,the most important environmental factor is the thickness of mate-rial required to fulfil a particular function, and this is determinedby the choice of material. The results are shown in Table 5.Fig. 2. Relative cost of plastic films to achieve equivalent barrier functions. Datafrom CES, 2008.
C.Y. Barlow, D.C. Morgan / Resources, Conservation and Recycling 78 (2013) 74– 80 77
Table 4
Environmental consequences of optimizing packaging parameters.
Feature Achieved by Positive consequences Negative consequences
Reduced weight of packaging Reduce film
thickness by using
multi-layer film
Less material required; material production
energy saved
Reduced transport costs
Increased complexity of manufacture means
higher failure rates so more wastage
Recyclability impaired or prevented
Reduced volume of packaging Polymer bags
rather than trays
Volume of packaged item reduced: better
packing density enabled. Transport used more
efficiently (e.g. fuller lorries: fewer needed)
Refrigeration costs reduced
Reduced pressure on end-of life facilities
(landfill)
Less material required; material production
energy saved
Trays potentially easier to recycle than bags
The relative film thicknesses have been calculated assuming thatflux of molecules through the film is determined by Fick’s first law,so that it is inversely proportional to film thickness. Environmen-tal impact is indicated by a single factor, energy, which includescontributions both from the energy required to manufacture thepolymer (the embodied energy) and the energy required to makethe film (which is a much smaller factor, typically 10% of the embod-ied energy).For the oxygen barrier function, EVOH requires a slightly thin-ner film to maintain the same oxygen barrier properties as a PVDCfilm. The other materials require films very significantly thicker,by a factor of between one and two orders of magnitude, and thesethicker films carry proportionately greater environmental burdens.The spread of thicknesses required to achieve the same moisturebarrier function as PVDC is much smaller; HDPE provides a signifi-cant advantage for this function, whilst EVOH is the least effective.It is clear from this analysis that using a single material for pack-aging which needs to achieve low permeability to both moistureand oxygen, requires a compromise on properties. The analysishas been normalized for PVDC, which is not the optimum mate-rial on all metrics, but is a popular material in the industry. Noneof these materials scores highly on all factors. The case for a multi-layer film seems to be strong, allowing the film to be optimized forthickness, energy footprint and cost. Consideration of other filmattributes (see Table 2) will indicate other materials which shouldbe incorporated into an optimized multi-layer film.This analysis is incomplete without discussion of end-of-life fac-tors, which is the subject of the next section.2. Polymer recycling2.1. General issuesWith increasing pressure to reduce waste going to landfill,recycling of materials in general is moving up the political agenda.Polymers typically comprise about 14% of the UK municipal wastestream by weight (WRAP, 2009), but the proportion by volumeis greater by a factor of about 2.5 (ACRR, 2002) and volumes arethe limiting factor. Recycling of polymers is therefore an area ofparticular interest. Recent rapid increases in raw material pricesare also helping to promote development of recycling (e.g. BritishPolythene and Industries, 2013). The problems, however, aresubstantial. With a few exceptions, polymer waste streams areregarded as low-value waste, and economic considerations providea deterrent to performing costly processes to return the material tothe use cycle. However, polymers are energy-intensive to manufac-ture (in the region of 70–100 MJ per kg, comparable to metals) andmost are derived from fossil fuels, so their environmental impact issubstantial. If recycling can be achieved without excessive energyexpenditure then there should be environmental benefits. Mostimportantly, if recycled material can substitute for some virginpolymer, pressures to increase virgin polymer production mightbe relieved. Of secondary significance in terms of environmentalimpact is the reduction in the amount of waste going to landfill, orother non-value-adding end-of-life routes such as litter, althoughthis is the aspect which attracts the most attention from the mediaand the general public.The choices for what to do with polymers at end of life aresummarized in Table 6. Broadly, mechanical recycling involves thelowest input of energy and resources, and is most suitable forthe higher purity waste-streams of thermoplastic polymers. Feed-stock recycling, including pyrolysis, hydrogenation and gasification(Scheirs, 1998) and depolymerisation, partial oxidation or crack-ing (Garforth et al., 2004) is more tolerant of impurity, but is amuch more energy-intensive process which appears to operateeffectively only for high throughput volumes. Thermal recycling,burning, recaptures a fraction of the intrinsic energy of the oil-based polymer, but is not normally regarded as recycling. It ismost suitable for contaminated and mixed plastics. Other recyclingapplications typically involve grinding polymer and using it as afiller for a range of materials – mainly polymers and rubbers ormixed composites (e.g. polymer and paper). The recyclate here isgenerally substituting for a rather low-grade alternative material,so the environmental benefits are mainly concerned with avoidinglandfill, regarded as the least environmentally desirable option. Thelifetime of conventional polymers in landfill sites is essentially infi-nite – they do not degrade under anaerobic conditions. This doesraise the intriguing possibility of gaining revenue from combustion
Table 5
Comparison of thickness, embodied energy and cost for equivalent barrier functions delivered by single material films.
PVDC film alone EVOH film alone HDPE film alone LDPE film alone PET film alone
Relative energy for polymer film
manufacture per unit volume
1 0.6 0.3 0.3 0.6
Relative cost per unit volume 1 0.6 0.004 0.004 0.005
Oxygen barrier function only Relative thickness 1 0.7 425 1250 14
Relative CO2 footprint 1 0.4 140 400 8.7
Relative cost 1 0.4 1.8 5.1 0.07
Moisture barrier function only Relative thickness 1 7.8 0.3 2.9 5.3
Relative CO2 footprint 1 4.8 0.1 0.9 3.2
Relative cost 1 4.8 0.001 0.012 0.027
78 C.Y. Barlow, D.C. Morgan / Resources, Conservation and Recycling 78 (2013) 74– 80
Table 6
End-of-life options for polymers.
Suitable waste
streams
Energy and
resource usage
Comments
Mechanical,
primary or
closed-loop
recycling
Clean, wellcharacterised
industrial or
post-consumer
thermoplastics.
Low Post-consumer
recycling
normally
limited to
bottles (HDPE,
PET or PVC)
Chemical or
feedstock
recycling
(depolymerisation;
partial
oxidation;
cracking)
More mixed and
impure polymer
streams.
Specialist
polymers.
High High volumes
needed to be
economic
Energy recovery Most; chlorinecontaining
polymers
excluded
Negative Legislation
limits some
waste streams.
Public
opposition.
Other material
re-use (e.g. as
fillers)
High-volume
examples include
electronics
thermosets;
rubbers
Variable;
generally low
Potential for
increasing
amounts, but
material is
low-value
Landfill Any Low
of polymers if landfill sites are mined in the future (Van der Zeeet al., 2004).Estimates for Europe in 2009 were that 22.5% of post-consumerplastic is recycled, with a further 31.5% being used for energy recov-ery (Plastics Europe, 2010). Mechanical recycling dominates therecycling industry; chemical recycling reached a fairly steady levelof about 350kt in Western Europe between 1997 and 2003. Thiswas around 4% of the recovered total in 2003 but represented asteadily decreasing fraction as mechanical recycling ramped up(Plastics Europe, 2004). The commonest other waste treatment pro-cesses which are regarded as environmentally responsible and areincreasing in popularity are Energy from Waste, Mechanical andBiological Treatment Plants, and Gasification (RECOUP, 2009).2.2. Recycling of mixed or post-consumer polymersBecause of the difficulty of purifying polymers, the nature ofthe output of a recycling process is crucially dependent on thepurity of the input material. This is one of the critical factorswhich distinguishes polymer processing from that of metals, wherepurification is routinely an intrinsic part of both manufacture andrecycling. High-value polymer recycling therefore requires high-purity input, and the potential for this varies between differentpolymers and between different waste streams. For example, poly-olefins are amongst the more easily recyclable polymers, but evenhere there are many obstacles to a profitable recycling operation.A highly specialized waste stream such as HDPE milk bottles con-tains uncoloured polymer with few or no additives which has beenoptimized for blow moulding by having a high molecular weight(Scheirs, 1998). This can yield high-value material which can berecycled to food-grade polymer and so substitute directly for virginpolymer. However, a waste stream comprised of different gradesof HDPE is likely to contain coloured plastic, different molecularweights, and a range of additives to improve processing or aspectsof the lifetime phase (e.g. UV protection). In addition, the contami-nants from the use phase will be varied, and so cleaning processesare more costly. There may also be labels. Historically these weremade from paper, which was difficult to separate completely fromthe polymer stream and so was a barrier to recycling. Labels nowa-days are usually made from a range of polymers (e.g. polypropylene,PET, LDPE), most of which are not compatible with HDPE recyclingso still need to be removed together with any adhesive used toattach them to the bottles.Generating a high-value waste stream from mixed plas-tics normally requires sophisticated separation techniques (e.g.Wastewatch (2008)) or extensive manual handling, which remainsthe dominant method of separation (at the component level) inthe UK (RECOUP, 2009). However, sorting efficiencies are problem-atic: efficiencies vary between plastics, but lower contaminationlevels scale with reduced yields from the sorting process so a com-promise must be achieved. Since waste streams are regarded ascontaminated if they contain even small amounts of other materialsthere is little opportunity at present for high-value polymers beingderived from mixed waste. The situation is improved if the wastestream consists only of plastic bottles, since the range of polymers islimited. Up to 8% of the waste stream may be HDPE and PET bottles(WRAP, 2009). Bottle recycling is well-established as an econom-ically viable process, with 39% recycling rates achieved in Europe(RECOUP, 2009).The alternative strategy is to focus on ways to optimize the valueof materials made from mixed polymers. Compatibilisers, solidphase dispersants (Scott, 2000), are added to improve the miscibil-ity of specific different polymers and to allow them to be extrudedtogether. It may not be possible to create this effect in more diversemixtures, so treatment more commonly involves downcycling bythe addition of a mechanically strengthening component. Plasticlumber is a popular product, particularly for polyolefins such as PE(e.g. Wastewatch, 2008).The environmental desirability of recycling mixed plastics is ahighly controversial topic. It can be assessed using a number ofmetrics for disparate environmental impacts, including potentialsfor global warming, eutrophication, acidification, human toxicity,ozone layer depletion and abiotic depletion (Shonfield, 2008). Thesituation is complicated: plastics from different sources will requiredifferent degrees of sorting and cleaning, and the balance of poly-mers influences the revenue which can be obtained. But one ofthe most important factors is the assumptions which are madein creating the scenarios for the analysis (WRAP, 2010). In thisstudy LCA data from eight publications are compared, assessingthe relative impacts of recycling, incineration with energy recovery,landfill and pyrolysis as end-of-life options for post-consumer plas-tics. Four key assumptions are identified which significantly affectthe environmental impact and relative ranking of the end-of-lifeoptions.The most important factor to the present study is the proportionof virgin material saved as a result of recycling. Recycling aims toreduce the amount of virgin material produced. Most LCAs assumethat the recycled polymer is of sufficiently high quality that it cansubstitute for virgin polymer in a 1:1 ratio, so 1 kg recycled polymerdirectly substitutes for 1 kg virgin polymer (WRAP, 2010). How-ever, this is almost certainly over-optimistic for most applications,although detailed information is difficult to obtain. For example,post-consumer closed-loop recycling of polymer (when recycledpolymer is used for the same applications as the virgin polymer)is in the UK confined to clear PET bottles and HDPE milk bottles(Hopewell et al., 2009), and even in these cases it is rare to find 100%substitution for virgin polymer. For other polymers, the expectationis that recycled polymer properties are inferior to virgin polymer asa result of contamination or thermal degradation, so applications ofrecycled polymers do not correlate with those for virgin polymers.For example, a more realistic scenario for low-grade post-consumerPET (Shonfield, 2008) assumes that substitution might be 20% vir-gin plastic, 40% wood and 40% concrete. Whilst the analysis for 1:1substitution of virgin polymer showed a substantial environmen-tal benefit for mechanical recycling (620 kg CO2e saved per tonneof polymer recycled), the more pessimistic scenario resulted in a
C.Y. Barlow, D.C. Morgan / Resources, Conservation and Recycling 78 (2013) 74– 80 79
net increase in CO2e emitted of 440 kg. On this metric, mechanicalrecycling would not be environmentally desirable.Another factor relates to the quality of the sorting processesinfluences yield rates for reclamation and recycling processes:higher loss rates are associated with reduction in environmentalbenefit of recycling. Even in the best closed-loop recycling pro-cesses there is some attrition of material, and with post-consumerwaste the loss may be as high as 50% (Shonfield, 2008). Materialis lost at every stage in the process: sorting is needed to separateplastics from other materials, and then to separate the plastics intodifferent types, and all these stages may involve losses of up to 10%.The material is then shredded, cleaned and extruded, and a furtherloss of 10% is typical.Another identified major factor relates to the origin of the energysaved. Energy comes mainly from nuclear fuel, natural gas or coal inproportions which vary from country to country, and each energysource carries its own environmental burden. A study must there-fore specify a country mix for its LCA.A final factor which has a profound influence on the numbers isthe assumptions for the timescale for degradation of polymers inlandfill sites. Most LCA studies assume 3% degradation of polymerover 100 years, but this is subject to debate, with some authoritiessuggesting that an infinite timescale is more realistic.2.3. Recycling of filmsThe most profitable post-consumer polymer recycling opera-tions focus on bottles (WRAP, 2007), where the small range ofpolymers helps with identification, and handling is comparativelyeasy. Recycling of film from the domestic waste stream is more dif-ficult. Correct identification of the polymer is problematic becausethe range of polymers is much greater, and some of the films aremulti-layer. Multi-layer films of any sort are rejected from recyclingwaste streams since they cannot be separated into single poly-mer types and so suffer the same problems as mixed polymerdiscussed in Section 2.2. Contamination levels are high from pack-aging contents (often food). Film recycling levels from this wastestream are, not surprisingly, very low, and energy recovery is thehighest reclamation outcome which can be hoped for.Recycling of films from industrial sources is potentially a morecommercially viable operation. The range of polymers is lower: 95%of film volume is LDPE, HDPE or PP, and quantities can be highenough to make collection by re-processors economically attrac-tive. These three polymers can be separated from the rest of thewaste stream using flotation or hydrocloning (Wastewatch, 2008),but cannot easily be separated from each other. The mixed poly-olefins do not have sufficient mechanical strength for film-blowingto be possible (RAPRA, 2013), so only lower-value applications areavailable for the recycled material. It is estimated that about 40%of recycled polymers originate as films from commercial sources,particularly wholesale and distribution (WRAP, 2007).Even when a waste stream consists of just one material, theremay be problems with recycling to high-value material. For exam-ple, LDPE or LLDPE stretch wrap or cling wrap film is commonlyused for primary packaging, for wrapping goods on pallets for trans-portation; typically 900 g of clear polymer film will be used perpallet (Scheirs, 1998). Clear polymer waste normally attract higherprices than coloured polymers, since the reclaimed polymer can beused for a larger range of higher-value applications. However, clingwrap film has been treated with tackifiers to help it to adhere toitself and the product, and these attract dirt, the removal of whichadds to recycling costs.In the USA, film recovery has increased by 31% since 2005(American Chemistry Council, 2011). 71% of the recovered filmcomes from commercial sources, and consists of HDPE, LDPE andLLDPE film. Interest in film recycling is increasing, because of thenear-zero cost of the waste material (particularly the ‘dirtier’ mixedgrades). 57% of the reclaimed material was exported, 20% was usedto manufacture plastic lumber, 16% to ‘other’ applications, and only7% was used to make film and sheet.3. Biodegradable polymers for food packagingPrimary food packaging is likely to be contaminated with foodwhen it has fulfilled its function and becomes waste. An obvioussolution to the waste problem is to use packaging material whichwill degrade in the same way as food waste, so can be disposedof together with food waste. The currently preferred option in UKfor organic waste is by composting (DEFRA, 2006). Composting isgenerally regarded as an environmentally responsible waste man-agement option (Song et al., 2009), involving biodegradation oforganic materials under aerobic conditions. Food packaging madefrom biodegradable polymer would at first sight seem to be attrac-tive.Biodegradable polymers may be derived from renewableor non-renewable (fossil) resources (Scott, 2000), and not allbiologically-derived polymers are biodegradable. The most promi-nent biodegradable plastic is poly-lactic acid, PLA, derived fromplant material, typically corn (maize). It is increasingly beingused for food applications, and is promoted as being compostable(e.g. Packaging Environmental, 2013). Production of PLA packag-ing material probably has a higher environmental footprint thanproduction of conventional oil-based polymers (Song et al., 2009).However, the lifecycle impact is reduced if composting is used atend-of-life (Pilz et al., 2010).There is much uncertainty about the likelihood of biodegrad-able plastics entering the appropriate waste disposal channels(Song et al., 2009). They currently comprise a small proportionof the total polymer waste stream: PLA has been estimated at 3%(WRAP, 2009). Conventional polymers do not degrade under com-posting conditions, so because of potential confusion all polymersare normally excluded from composting waste streams. Cateringoperations using nothing but biodegradable plastics may be able toguarantee a waste-stream which is entirely compostable, but thisis a small sector.Further problems arise from the diversity of composting opera-tions. Commercial systems operate at relatively high temperatures:standards for biodegradation (EN 13432, quoted by Song et al.,2009) specify degradation rates at 58◦C. Home composting degra-dation rates are given for temperatures of 20–30◦C, although in UKa temperature range of 20–25◦C is more usual (Song et al., 2009).Even if the environmental desirability of biodegradable plasticsis accepted, there are question-marks over the ability and suit-ability of PLA to take a major share of the packaging sector, for arange of reasons (Yates and Barlow, 2013). In the short and mediumterm, the industry does not currently have the capacity to increaseproduction to appropriate levels (Scott, 2000; Song et al., 2009).There is also the technical specification of the films to be taken intoconsideration, with the many functions which need to be fulfilled(Section 1.3). In common with other polymers, the expectation isthat multi-layer films are needed in order to compete with conven-tional packaging films. With currently available materials, this willresult in the biodegradability being compromised. This is an areaof active research and development (Robertson, 2013).4. ConclusionsThe environmental impact of meat and cheese packaging needsto take account of the full lifecycle of the packaging and theproducts. Packaging reduces food waste, but itself adds to envi-ronmental burdens by using material, requiring transport and
80 C.Y. Barlow, D.C. Morgan / Resources, Conservation and Recycling 78 (2013) 74– 80
requiring end-of-life disposal. Optimizing the packaging for allstages in its lifecycle is the ultimate goal of ‘sustainable packaging’,but solutions at present involve trade-offs.The limited lifecycle analysis conducted here indicates thatmoving towards packaging which is more recyclable should notbe the highest priority. The results show that minimization of thematerial used whilst retaining mechanical and barrier properties isthe best way to achieve a reduction in environmental impact.Biodegradable polymers may have a part to play in reducing theenvironmental impact of packaging, but the benefits are currentlythe subject of debate.FundingWe are grateful to Cryovac Sealed Air for the provision of fundingfor parts of this work.ReferencesACRR (Association of cities and regions for recycling). Waste plastics recycling:a good practices guide by and for local and regional authorities; 2002,www.pvc.org/upload/documents/ACRRReport.pdf. Retrieved 14.3.2013.American Chemistry Council. National Postconsumer Recycled plastic bag andfilm report, Feb 2011, prepared for the American Chemistry Council; 2011,http://www.americanchemistry.com/s plastics/sec content.asp?CID=1593&DID=11723. Retrieved 7.3.2013.Brent Strong A. Plastics: Materials and processing. 3rd ed. London: Prentice Hall;2005.British Polythene Industries http://www.foodproductiondaily.com/Packaging/BPI-counts-the-cost-of-raw-material-hikes-vows-recycling-ops-boost 2011.Retrieved 7.3.2013.CES Cambridge Engineering Selector. http://www.grantadesign.com/products/ces/2008DEFRA, 2006. Food industry sustainability strategy. www.defra.gov.uk. Retrieved18.3.2011.European Parliament and Council Directive 94/62/EC on Packaging and PackagingWaste, 1994 L0062 — EN — 05.04.2005 — 003.001 (1994) Retrieved 7.3.2013.Fiala N. Meeting the demand: an estimation of potential future greenhousegas emissions from meat production. Ecological Economics 2008;vol67(3):412–9.Garforth AA, Ali S, Hernandez-Martinez J, Akah A. Feedstock recycling of polymerwastes. Current Opinion in Solid State and Materials 2004;8(6):419–25.Hopewell J, Dvorak R, Kosior E. Plastics recycling: challenges and opportunities.Philosophical Transactions of the Royal Society B 2009;364:2115–26.Incpen. Factsheet ‘Why packaging’; 2010, 31/08/2010, http://www.incpen.org/displayarticle.asp?a=17&c=2. Retrieved 2.3.2013.Incpen. Public attitudes to packaging. Ipsos Mori 2008; 2008, sri environmentINCPEN summary report 271108(1).pdf. Retrieved 7.3.2013.Love food hate waste http://www.lovefoodhatewaste.com/. Retrieved 7.3.2013.Morgan DC. Recycling multi-layer barrier packaging waste. PhD thesis. U.K.: Univer-sity of Cambridge; 2010.Mortensen G. Putting packaging first. In: 5th IDF Symposium on Cheese Ripening,9–13 March; 2008, Bern.Packaging Environmental http://www.packagingenvironmental.co.uk. Accessed14.3.2013.Packaging Federation www.packagingfedn.co.uk. Retrieved 7.3.2013.Packaging Legislation, 2003. http://www.legislation.gov.uk/uksi/2003/1941/pdfs/uksi 20031941 en.pdfPilz H, Brandt B, Fehringer R. The impact of plastics on life cycle energy consump-tion and greenhouse gas emissions in Europe. Summary report, June; 2010,www.denkstatt.at. Retrieved 19.3.2011.Plastics Europe. Association of Plastics Manufacturers. An analysis of plasticsconsumption and recovery in Europe 2002–2003; 2004, 2002 20022003.pdf.
Selasa, 08 Oktober 2013
Analisis Proksimat
BUKU/BACAAN
SISWA
(B/BS)
Mata Pelajaran : Agribisnis
Hasil Pertanian
Kelas/Semester : XI/2

A. Judul :
1. Analisis Bahan Hasil
Pertanian Secara Kimia (Analisis Proksimat)
2. Penentuan Kadar Protein Kasar Pada Bahan Pangan
B. Tujuan Pembelajaran
:
1.
Mampu menjelasakan pengertian
tentang analisis proksimat
2.
Mampu menjelaskan manfaat metode analisis proksimat.
3.
Mampu
menjelaskan apa-apa saja yang dapat diamati dengan metode analisis proksimat
4.
Mampu mempraktikkan cara
menganalisis bahan pangan dengan metode proksimat.
5.
Mampu mengetahui kandungan zat
makanan dari bahan pakan yang akan diuji.
6.
Mampu
menganalisis kadar protein yang ada dalam bahan pangan.
C. Uraian Materi :
URAIAN MATERI
Bahan pakan adalah segala sesuatu yang dapat
dimakan dan dicerna sebagian atau seluruhnya tanpa mengganggu kesehatan ternak
yang memakannya. Pakan memiliki peranan penting bagi ternak, baik untuk
pertumbuhan maupun untuk mempertahankan hidupnya. Fungsi lain dari pakan adalah
untuk memelihara daya tahan tubuh dan kesehatan, agar ternak dapat tumbuh
sesuai dengan yang diharapkan. Pakan yang diberikan pada ternak harus
mengandung nutrien yang dapat memenuhi kebutuhan ternak. Analisis proksimat merupakan
salah satu cara untuk mengetahui kandungan-kandungan nutrien yang ada di dalam
bahan pakan.
Analisis proksimat digunakan untuk
mengetahui kandungan air, abu, serat kasar, lemak kasar, protein kasar dan
bahan ekstrak tanpa nitrogen (BETN) yang terkandung dalam pakan.
Tujuan dari Praktikum Bahan Pakan dan
Formulasi Ransum adalah agar mahasiswa terampil dalam melakukan analisis
proksimat. Manfaat dari praktikum ini adalah mahasiswa dapat melakukan analisis
bahan pakan isi rumen kambing menggunakan metode analisis proksimat.

Protein kasar, 4). Lemak kasar (ekstrak ether), 5). Serat
kasar, 6). Ekstrak Tanpa Nitrogen (ETN). Khusus untuk ETN nilainya dicari hanya
berdasarkan perhitungan yaitu: 100% dikurangi jumlah dari kelima fraksi yang
lain.
Cara ini dikembangkan dari Weende experiment station di Jerman oleh Henneberg dan Stocman pada tahun 1865, yaitu suatu metode analisis yang menggolongkan komponen yang ada pada makanan. Cara ini dipakai hampir di seluruh dunia dan disebut “analisis proksimat”. Analisis ini didasarkan atas komposisi susunan kimia dan kegunaannya (Tilman et al., 1998).
Cara ini dikembangkan dari Weende experiment station di Jerman oleh Henneberg dan Stocman pada tahun 1865, yaitu suatu metode analisis yang menggolongkan komponen yang ada pada makanan. Cara ini dipakai hampir di seluruh dunia dan disebut “analisis proksimat”. Analisis ini didasarkan atas komposisi susunan kimia dan kegunaannya (Tilman et al., 1998).
Manfaat Analisis Proksimat
·
Mengidentifikasi kandungan zat
makanan yang belum diketahui sebelumnya
·
Menguji kualitas bahan yang telah diketahui dibandingkan
dengan standarnya
·
Mengevaluasi hasil formula
ransum yang telah dibuat
·
Merupakan dasar untuk analisis
lebih lanjut
2.1. Analisis Proksimat
Analisis proksimat merupakan metode yang
tidak menguraikan kandungan nutrien secara rinci, namun berupa nilai perkiraan
(Soejono, 1990). Metode ini dikembangkan oleh Henneberg dan Stockman dari
Weende Experiment Station di Jerman pada tahun 1865 (Tillmanet al., 1991).
Analisis makronutrien analisis proksimat meliputi kadar abu total,
air total, lemak total, protein total dan karbohidrat total, sedangkan untuk
kandungan mikronutrien difokuskan pada provitamin A (β-karoten) (Sudarmadji et
al., 1996). Analisis vitamin A dan provitamin A secara kimia dalam buah-buahan
dan produk hasil olahan dapat ditentukan dengan berbagai metode diantaranya
kromatografi lapis tipis, kromatografi kolom absorpsi, kromatografi cair
kinerja tinggi, kolorimetri dan spektrofotometri sinar tampak (Winarno, 1997).
2.1.1. Air

Metode pengeringan melalui oven sangat
memuaskan untuk sebagian besar makanan, akan tetapi beberapa makanan seperti
silase, banyak sekali bahan-bahan atsiri (bahan yang mudah terbang) yang bisa
hilang pada pemanasan tersebut (Winarno, 1997).
2.1.2. Abu
Jumlah abu dalam bahan pakan hanya penting
untuk menentukan perhitungan bahan ekstrak tanpa nitrogen (Soejono, 1990).
Kandungan abu ditentukan dengan cara mengabukan atau membakar bahan pakan dalam
tanur, pada suhu 400-600oC sampai semua karbon hilang dari sampel, dengan suhu
tinggi ini bahan organik yang ada dalam bahan pakan akan terbakar dan sisanya
merupakan abu yang dianggap mewakili bagian inorganik makanan. Namun, abu juga
mengandung bahan organik seperti sulfur dan fosfor dari protein, dan beberapa
bahan yang mudah terbang seperti natrium, klorida, kalium, fosfor dan sulfur
akan hilang selama pembakaran. Kandungan abu dengan demikian tidaklah
sepenuhnya mewakili bahan inorganik pada makanan baik secara kualitatif maupun
secara kuantitatif (Anggorodi, 1994).
2.1.3. Serat Kasar
Fraksi serat kasar mengandung selulosa,
lignin, dan hemiselulosa tergantung pada species dan fase pertumbuhan bahan
tanaman (Anggorodi, 1994). Pakan hijauan merupakan sumber serta kasar yang
dapat merangsang pertumbuhan alat-alat pencernaan pada ternak yang sedang
tumbuh. Tingginya kadar serat kasar dapat menurunkan daya rombak mikroba rumen
(Farida, 1998).
Cairan retikulorumen mengandung mikroorganisme, sehingga ternak
ruminasia mampu mencerna hijauan termasuk rumput-rumputan yang umumnya
mengandung selulosa yang tinggi (Tillman et al., 1991). Langkah pertama metode
pengukuran kandungan serat kasar adalah menghilangkan semua bahan yang terlarut
dalam asam dengan pendidihan dengan asam sulfat bahan yang larut dalam alkali
dihilangkan dengan pendidihan dalam larutan sodium alkali. Residu yang tidak
larut adalah serat kasar (Soejono, 1990).
2.1.4. Lemak Kasar

Selain mengandung lemak sesungguhnya,
ekstrak eter juga mengandung waks (lilin), asam organik, alkohol, dan pigmen,
oleh karena itu fraksi eter untuk menentukan lemak tidak sepenuhnya benar
(Anggorodi, 1994). Penetapan kandungan lemak dilakukan dengan larutan heksan
sebagai pelarut.
Fungsi dari n heksan adalah untuk
mengekstraksi lemak atau untuk melarutkan lemak, sehingga merubah warna dari
kuning menjadi jernih (Mahmudi, 1997).
2.1.5. Protein Kasar

Kelemahan analisis proksimat untuk protein
kasar itu sendiri terletak pada asumsi dasar yang digunakan. Pertama, dianggap
bahwa semua nitrogen bahan pakan merupakan protein, kenyataannya tidak semua
nitrogen berasal dari protein dan kedua, bahwa kadar nitrogen protein 16%, tetapi
kenyataannya kadar nitrogen protein tidak selalu 16% (Soejono, 1990).
Menurut Siregar (1994) senyawa-senyawa non
protein nitrogen dapat diubah menjadi protein oleh mikrobia, sehingga kandungan
protein pakan dapat meningkat dari kadar awalnya. Sintesis protein dalam rumen
tergantung jenis makanan yang dikonsumsi oleh ternak. Jika konsumsi N makanan
rendah, maka N yang dihasilkan dalam rumen juga rendah. Jika nilai hayati
protein dari makanan sangat tinggi maka ada kemungkinan protein tersebut
didegradasi di dalam rumen menjadi protein berkualitas rendah.
2.1.6. Bahan Ekstrak Tanpa
Nitrogen (BETN)
Kandungan BETN suatu bahan pakan sangat
tergantung pada komponen lainnya, seperti abu, protein kasar, serat kasar dan
lemak kasar. Jika jumlah abu, protein kasar, esktrak eter dan serat kasar
dikurangi dari 100, perbedaan itu disebut bahan ekstrak tanpa nitrogen (BETN)
(Soejono, 1990). BETN merupakan karbohidrat yang dapat larut meliputi
monosakarida, disakarida dan polisakarida yang mudah larut dalam larutan asam
dan basa serta memiliki daya cerna yang tinggi (Anggorodi, 1994).
2.2. Isi Rumen Kambing
Pakan adalah campuran beberapa bahan pakan,
baik yang sudah lengkap maupun yang belum lengkapi, yang disusun secara khusus
untuk dapat dimanfaatkan oleh ternak (Soejono, 1994). Bahan pakan merupakan
segala sesuatu yang dapat diberikan kepada ternak baik berupa bahan organik
maupun bahan anorganik yang sebagian atau seluruhnya dapat dicerna tanpa
mengganggu kesehatan ternak (Hartadi et al., 1997).
Isi rumen merupakan
limbah pemotongan ternak ruminansia yang berasal dari pakan yang dikonsumsi dan
belum menjadi feses yang terdapat di dalam rumen (Murni et al., 2008). Nutrisi
yang terkandung dalam isi rumen antara lain serat kasar, karbohidrat, dan
protein kasar yang merupakan media bagi kehidupan mikroba. Pemanfaatan bolus
yang merupakan limbah sebagai bahan pakan merupakan salah satu upaya untuk
meningkatkan produktivitas ternak ruminansia. Isi rumen dapat meningkatkan
kadar protein kasar dan menurunkan kadar serat kasar produk pemeraman (Sutrisno
et al., 1992).
Kandungan nutrien isi rumen dipengaruhi oleh macam makanan, mikroba rumen, dan lama makanan dalam rumen. Bolus mengandung serat kasar yang tinggi, protein, mineral dan vitamin. Kandungan nutriennya adalah 10,90% air, 25,07% abu (Sutrisno et al., 1992), 10–27,6% bahan kering, 8,42–25% protein kasar, 18,26–38% serat kasar, 2–8,91% lemak kasar dan 30,2–63,17% BETN (Yudijeliman, 2008).
MATERI
DAN METODE
Praktikum Bahan
Pakan dan Formulasi Ransum dengan materi Analisis Proksimat Bahan Pakan dengan
sampel isi rumen kambing dilaksanakan pada hari Senin tanggal 28 November 2010
dari pukul 05.30-21.00 WIB dan hari Selasa tanggal 29 November 2010 dari pukul
05.30-22.30 WIB di Laboratorium Ilmu Makanan Ternak, Fakultas Peternakan
Universitas Diponegoro, Semarang.
3.1. Materi
Materi yang digunakan adalah tepung isi rumen kambing, aquades,
H2SO4 0,3 N, NaOH 1,5 N, aseton, air panas, n heksan, katalisator (selenium),
H2SO4 pekat, H3BO4 4%, indikator (MR + MB), NaOH 45%, HCl 0,1 N. Alat yang
digunakan adalah botol timbang dan timbangan analitis yang digunakan untuk
menimbang sampel, oven untuk mensterilisasikan alat dan bahan, eksikator untuk
mensterilisasikan alat dan bahan, penjepit untuk membantu dalam mengambil
sampel, tanur listrik untuk analisis kadar abu, crusible porselin untuk tempat
sampel, labu erlenmeyer untuk menempatkan larutan, becker glass untuk
menempatkan larutan, gelas ukur sebagai pengukur larutan yang akan digunakan,
corong buchner untuk alat bantu memasukkan sampel cair, kertas saring bebas abu
untuk menyaring sampel pada analisis kadar serat kasar, tabung soxhlet untuk
wadah sampel analisis kadar lemak kasar, pendingin tegak untuk analisis lemak
kasar, labu kjeldahl untuk analisis protein kasar, buret untuk alat titrasi,
kompor listrik untuk mendidihkan sampel pada analisis kadar lemak kasar,
alat-alat destilasi sebagai destilator, lemari asam untuk analisis protein
kasar, serta kertas minyak untuk menempatkan sampel.
3.2.Metode
3.2.1. Analisis Kadar Air
3.2.1. Analisis Kadar Air
Langkah pertama adalah mencuci botol
timbang, kemudian mengeringkan dalam oven pada suhu 105oC sampai 110oC selama 1
jam, memasukkan dalam eksikator selama 15 menit, kemudian menimbang botol
timbang (x gram). Menimbang sejumlah sampel, misal beratnya y gram. Memasukkan
sampel ke dalam botol timbang mengovennya selama 4-6 jam dengan suhu
105oC-110oC, selanjutnya adalah memasukkan sampel kedalam eksikator selama 15
menit. Setelah itu menimbang botol sampel, misal beratnya z gram. Mengulang
pengeringan 3 kali masing-masing 1 jam sampai berat sampel konstan (selisih
maksimal 0,2 mg). Menghitung kadar air dengan rumus :
Kadar air = x 100 %
Keterangan :
x
= berat botol timbang
y = berat sampel
z = berat botol timbang dan sampel setelah dioven
y = berat sampel
z = berat botol timbang dan sampel setelah dioven
Analisis Kadar Abu
Langkah pertama dalam analisis kadar abu ini adalah mencuci crusible
porselin dengan air sampai bersih, kemudian mengeringkannya dalam oven pada
suhu 105oC-110oC selama 1 jam dan mendinginkan dalam eksikator selama 15 menit,
kemudian menimbangnya, misal beratnya x gram. Menimbang sejumlah sampel, misal
beratnya y gram, penimbangan dengan menggunakan crusible porselin sebagai
tempatnya. Setelah itu memijarkan sampel dan cawan dalam tanur listrik pada
suhu 400oC-600oC selama 4-6 jam, sampai menjadi abu putih semua.

Kadar abu = x 100 %
Keterangan:
z = berat crusible porselin dan sampel setelah ditanur
y = berat sampel
x = berat crusible porselin setelah dioven
Keterangan:
z = berat crusible porselin dan sampel setelah ditanur
y = berat sampel
x = berat crusible porselin setelah dioven
Cawan yang telah
dibersihkan dipanaskan dalam tanur pada suhu 100oC selama 2 jam
lalu ditimbang sebagai bobot kosong. Contoh yang telah diuapkan ditimbang
teliti + 1g dalam cawan dan dinyatakan sebagai bobot awal, kemudian cawan
tersebut dimasukkan ke dalam tanur suhu 600oC selama 5 jam.
Setelah pemanasan cawan dimasukkan ke dalam desikator, dan setelah dingin
ditimbang dan dipanaskan beberapa kali sampai diperoleh bobot tetap sebagai
bobot akhir.
Keterangan:
a=
bobot cawan kosong
b=
bobot cawan dan contoh
c=
bobot cawan dan contoh setelah pengabuan
Analisis Kadar Serat Kasar
Langkah dalam analisis kadar serat kasar adalah mempersiapkan semua
alat-alat dan pereaksi yang akan digunakan. Mencuci semua alat dan
memasukkannya ke dalam oven dengan suhu 105oC–110oC selama 1 jam dan
memasukkanya ke dalam eksikator selama 15 menit. Menimbang sampel, misal beratnya
x gram dan memasukkannya ke dalam becker glass. Memasukkan H2SO4 0,3 N 50
ml dalam labu erlenmeyer yang berisi sampel tersebut dan memasaknya hingga
mendidih selama 30 menit. Mendinginkan sampel tersebut sebentar dan menambahkan
dengan NaOH 1,5 N 25 ml serta memasaknya sampai mendidih selama 30 menit.
Menimbang crusible porselin dan kertas saring, misal berat kertas saring a gram, memasukkan ke dalam oven selama 1 jam dengan suhu 105oC–110oC dan memasukkan di dalam eksikator selama 15 menit. Cairan yang berisi sampel disaring dengan menggunakan crusible porselin dan kertas saring yang dipasang corong bunchner. Mencuci sampel berturut-turut dengan 50 ml air panas, 50 ml H2SO4 0,3 N, 50 ml air panas dan 25 ml aseton. Memasukkan crusible porselin dan kertas saring beserta isinya pada suhu 105oC-110oC selama 1 jam dan memasukkan ke eksikator selama 15 menit. Selanjutnya menimbang crusible porselin dan isinya, misal beratnya y gram. Kemudian memijarkan crusible porselin dan isinya dalam tanur pada suhu 400oC-600oC selama 4-6 jam sampai menjadi abu putih dan mendinginkannya dalam eksikator selama 15 menit. Setelah itu menimbangnya misal beratnya z gram. Penghitungan kadar serat kasar dengan rumus
Kadar
serat kasar = “y – z – a” /”x” x 100 %
Keterangan :
a = kertas saring
x = berat sampel
y = berat sampel dan crusible porselin setelah dioven
z = berat sampel, crusible porselin dan kertas saring setelah ditanur.
Keterangan :
a = kertas saring
x = berat sampel
y = berat sampel dan crusible porselin setelah dioven
z = berat sampel, crusible porselin dan kertas saring setelah ditanur.
Contoh yang telah digunakan pada penetapan lemak ditimbang dengan
teliti + 500 mg lalu dimasukkan ke dalam erlenmeyer. Selanjutnya ditambahkan
100 ml asam sulfat 1,25% dan dipanaskan sampai mendidih. Setelah 1 jam
ditambahkan 100 ml natrium hidroksida 3,25%, dipanaskan kembali sampai mendidih
selama 1 jam, kemudian didinginkan dan disaring dengan menggunakan kertas
saring yang telah diketahui bobotnya. Endapan dicuci dengan asam sulfat encer
dan alkohol, lalu kertas saring dan endapan dikeringkan dalam oven dan
ditimbang.
Keterangan
:
a
= bobot contoh
b
= bobot endapan
c
=bobot abu
Analisis Kadar Lemak Kasar
Langkah pertama dalam analisis kadar lemak adalah mencuci dan
memasukkan semua alat dalam oven pada suhu 105oC-110oC selama 1 jam, kemudian
memasukkannya ke dalam eksikator selama 15 menit dan menimbang, misal beratnya
a gram. Menimbang sampel dan kertas, misal beratnya b gram.
Membungkus sampel dengan kertas saring dan
memasukkan ke dalam oven selama 4-6 jam pada suhu 105oC-110oC dan eksikator
selama 15 menit, serta menimbang kertas saring misal beratnya y gram.
Memasukkan sampel dan kertas saring dalam alat soxhlet, kemudian menambahkan n
heksan serta memasang alat pendingin tegak yang dialiri air dingin. Melakukan
penyaringan sampai 8-10 kali sirkulasi, sampel dikeluarkan dan
diangin-anginkan. memasukkannya dalam oven dengan suhu 105oC -110oC selama 1
jam, memasukkan ke eksikator selama 15 menit.
Sampel ditimbang 3 g lalu dimasukkan ke thimble. Labu lemak yang
telah bersih dimasukkan ke dalam oven, lalu ditambahkan batu didih dan
ditimbang sebagai bobot kosong.
Thimble dimasukkan ke
dalam soklet, kemudian labu lemak dihubungkan dengan soklet dan ditambahkan
pelarut heksan 150 ml melewati soklet. Labu lemak dan soklet dihubungkan dengan
penangas dan diekstrak selama 6 jam. Setelah ekstraksi selesai, labu lemak
dievaporasi untuk menghilangkan pelarut. Selanjutnya labu lemak dimasukkan ke
dalam oven 1 suhu 105oC selama 1 jam. Setelah dingin
ditimbang sebagai bobot akhir (bobot labu dan lemak).
Keterangan:
a=
bobot contoh
b=
bobot labu lemak dan labu didih
c=
bobot labu lemak, batu didih dan lemak
Analisis Kadar Protein
Kasar
Metode yang digunakan dalam analisis kadar protein ada 3 yaitu
proses destruksi yang merupakan terjadinya proses oksidasi perubahan N atau
protein menjadi (NH4)2 SO4, proses destilasi yaitu pemecahan (NH4)2SO4 yang
dilakukan oleh basa kuat, yaitu NaOH serta proses titrasi, yaitu terjadinya
reaksi asam basa.
Mencuci labu
destruksi, kemudian memasukkannya dalam oven pada suhu 105oC-110oC selama 1 jam
dan memasukkan labu destruksi ke eksikator selama 15 menit. Menimbang sampel,
misal beratnya x gram, kemudian memasukannya ke dalam labu destruksi.
Menambahkan katalis yang terdiri dari selenium 0,3gr dan menambahkan H2SO4
pekat 25 ml. Memanaskan semua bahan yang ada dalam labu destruksi tersebut
secara perlahan-lahan dalam lemari asam, dimana mula-mula dengan nyala kecil
sama tidak berasap atau tidak berbuih lagi, dengan nyala diperbesar. Melakukan
pendidihan (destruksi) bahan dalam labu destruksi sampai terjadi perubahan
warna larutan menjadi hijau jernih atau kuning jernih. Perubahan warna yang
terjadi secara bertahap adalah hitam, merah, hijau keruh dan kemudian hijau
jernih.
Proses selanjutnya
adalah proses destilasi yaitu mendinginkan labu destruksi tersebut lalu sampel
dimasukkan labu destilasi yang telah dipasang pada rangkaian alat destilasi.
Menggojog labu tersebut membentuk angka delapan dengan menambahkan 50 ml
aquades dan 40 ml NaOH 45%. Menampung hasil sulingan dalam erlemeyer yang telah
berisi asam borat (H3BO4) sebanyak 20 ml dan menambahkan indikator MR + MB
sebanyak 1 tetes sampai warna berubah dari ungu menjadi hijau jernih.
Selanjutnya melakukan titrasi dengan menggunakan HCl 0,1 N, hingga membentuk
warna ungu.
Membuat larutan blangko yaitu memasukkan
aquades 50 ml dan 40 ml NaOH 45% kedalam labu destilasi. Melakukan destilasi
dan menangkapnya dengan campuran H3BO4 sebanyak 20 ml dan indikator MR + MB
sebanyak 1 tetes sampai penangkap tersebut berubah warna dari ungu menjadi
hijau. Mentitrasi dengan menggunakan HCl 0,1 N sampai membentuk warna unggu
kembali, kemudian menghitung protein kasar
Rumus:
Kadar protein = (“titran sampel – blangko” )” x N HCl x 0,014 x 6,25″ /”sampel” x100%
Kadar protein = (“titran sampel – blangko” )” x N HCl x 0,014 x 6,25″ /”sampel” x100%
Keterangan :
0,014 = 1 ml alkali ekuivalen dengan 1 ml larutan N yang mengandung 0,014gN.
6,25 = Protein mengandung 16 % N
N HCl = Normalitas HCl (1 N)
0,014 = 1 ml alkali ekuivalen dengan 1 ml larutan N yang mengandung 0,014gN.
6,25 = Protein mengandung 16 % N
N HCl = Normalitas HCl (1 N)
Sampel ditimbang secara teliti sebanyak 200 mg, lalu dimasukkan ke
dalam labu Kjeldhal. Selanjutnya ditambahkan selen dan 10 ml asam sulfat pekat
dan didestruksi pada pemanas selama 2-3 jam atau sampai larutan menjadi jernih.
Setelah proses destruksi lalu dipindahkan ke dalam labu destilasi kemudian
diperiksa kandungan nitrogennya dengan menggunakan alat kjeltek.
Keterangan:
a=
bobot contoh
b=
volume HCl yang digunakan
6,25
= faktor konversi dari nitrogen ke protein
14
= Ar nitrogen
Asam Lemak
Sampel (minyak) ditimbang 0,2 g dalam tabung reaksi tertutup,
kemudian ditambahkan 2 ml natrium hidroksida dalam metanol, dipanaskan pada
suhu 80oC selama 20 menit, kemudian diangkat dan dibiarkan dingin. Selanjutnya ditambahkan
2 ml larutan boron trifluorida 20% dan dipanaskan kembali selama 20 menit,
kemudian diangkat, dibiarkan dingin dan ditambahkan 2 ml natrium klorida jenuh
serta 2 ml larutan heksan. Setelah itu campuran dikocok sampai merata, lalu
lapisan heksannya diambil dan dimasukkan ke tabung uji (evendop).
Kondisi
alat kromatografi gas yang digunakan untuk analisis asam lemak adalah:
Hasil preparasi kemudian diinjeksikan ke alat kromatografi gas
ketika suhu menunjukkan 150oC. Tombol start pada rekorder dan alat ditekan, dan
hasilnya akan keluar berupa kromatogram. Selanjutnya dilakukan analisis
kualitatif dan kuantitatif.
Berdasarkan kromatogram yang diperoleh, kemudian dilakukan
pencocokan waktu retensi yang sama atau mendekati waktu retensi standar asam
lemak. Kadar asam lemak dihitung dengan rumus sebagai berikut:
Keterangan:
Lc
= luas area contoh
Ls
= luas area standar
Cs
= konsentrasi standar
V
= volume akhir
b
= bobot contoh
KESIMPULAN DAN SARAN
5.1. Kesimpulan
Protein merupakan salah satu zat makanan yang berperan
dalam penentuan produktivitas ternak. Jumlah protein dalam pakan ditentukan
dengan kandungan nitrogen bahan pakan kemudian dikali dengan faktor protein
6,25. Angka 6,25 diperoleh dengan asumsi bahwa protein mengandung 16% nitrogen.
Kelemahan analisis proksimat untuk protein kasar itu sendiri terletak pada
asumsi dasar yang digunakan. Pertama, dianggap bahwa semua nitrogen bahan pakan
merupakan protein, kenyataannya tidak semua nitrogen berasal dari protein dan
kedua, bahwa kadar nitrogen protein 16%, tetapi kenyataannya kadar nitrogen
protein tidak selalu 16% (Soejono, 1990).
5.2.Saran
Pelaksanaan Praktikum untuk analisis protein kasar dapat berjalan dengan lancar, namun kurangnya ketelitian menyebabkan
waktu yang digunakan untuk menganalisis komposisi bahan kimia bahan pakan
terlalu banyak. Harapan kedepannya, praktikum dilaksanakan lebih teliti
terutama pada analisis kadar protein kasar yang prosesnya cukup panjang.
D. Contoh Soal Latihan :
Tugas
yang diberikan kepada siswa sebagai pengganti PR adalah siswa di beri tugas
untuk membuat laporan praktikum kerja yang sudah dipraktekkan di sekolah, yang
berkaitan dengan analisis proksimat itu sendiri.
Adapun format
laporan praktikumnya yaitu:
BAB I. PENDAHULUAN:
A. Latar Belakang
B. Maksud Dan Tujuan
C. Prinsip Percobaan
BAB II. TINJAUAN PUSTAKA
A. Teori Umum
B. Uraian Bahan
C. Prosedur Kerja
BAB III. METODE KERJA
A. Alat Dan Bahan
B. Cara Kerja
BAB IV. HASIL PENGAMATAN
A. Tabel Pengamatan
B. Gambar Pengamatan
BAB VI. PENUTUP
A. Kesimpulan
B. Saran
DAFTAR PUSTAKA
DAFTAR PUSTAKA
Farida,
W. R. 1998. Pengimbuhan Konsentrat dalam Ransum Penggemukan Kambing Muda di
Wamena, Irian Jaya. Media Veteriner 5 (2) : 21-26
Hartadi,
H., S. Reksohadiprodjo, dan A. D. Tillman. 1997. Tabel Komposisi Pakan untuk
Indonesia. Gadjah Mada University Press, Yogyakarta.
Mahmudi,
M. 1997. Penurunan Kadar Limbah Sintesis Asam Fosfat Menggunakan Cara Ekstraksi
Cair-Cair dengan Solven Campuran Isopropanol dan n-Heksan. Semarang:
Universitas Diponegoro.
Soejono,
M. 1990. Petunjuk Laboratorium Analisis dan Evaluasi Pakan. Fakultas Peternakan
Universitas Gadjah Mada, Yogyakarta.
Soejono,
M. 1994. Pengenalan dan Pengawasan Kualitas Bahan Baku dan Pakan. Ditjen
Peternakan. Dit. Bina Produksi, Jakarta.
Sudarmaji,
Slamet, Haryono, dan B. Suhadi. 1996. Analisis Bahan Makanan dan Pertanian.
Pusat Antar Universitas Pangan dan Gizi Universitas Gadjah Mada. Liberty,
Yogyakarta.
Tillman,
A. D., H. Hartadi, S. Reksohadiprodjo, S. Prawirokusumo, dan S. Lebdosukojo.
1991. Ilmu Makanan Ternak Dasar. Gadjah Mada University Press, Yogyakarta.
Langganan:
Postingan (Atom)